
Algorithmi: Bridging the Algorithms to Natural and

Programming Languages

António Manso

Departmental Unit of Information

Technologies

Polytechnic Institute of Tomar

Tomar, Portugal

manso@ipt.pt

Luís Lopes

Student

Polytechnic Institute of Tomar

Tomar, Portugal

aluno19055@ ipt.pt

Célio Gonçalo Marques

Departmental Information

Technology Unit

Polytechnic Institute of Tomar

Tomar, Portugal

celiomarques@ipt.pt

Raquel Guedes

Student

Polytechnic Institute of Tom

Tomar, Port ugal

aluno19994@ ipt.pt

Paulo Santos

Departmental Unit of Information

Technologies

Polytechnic Institute of Tomar

Tomar, Portugal

psantos@ipt.pt

Computer programming is a crucial competency in

computer science and is learned through languages and IDE

services designed to develop software in an industrial context.

Invariably, these environments and programming languages

use the English lexicon, and this can be an obstacle especially

for users who do not a good command of the language.

Algorithmi is a system that allows the learning of algorithms

using the native language of the students in its specification

and allows automatic translation into the most popular

programming languages. This paper presents the language

Generic Algorithm Language (GAL) and its translation into

Portuguese, English and Chinese. In this paper we also show

the translation of GAL for the procedural programming

models (C and Python), the Object-Oriented model (Java, C #

and C ++) and the Web programming model through the PHP

(server-side) and Javascript language (Client-side). In

addition to allow algorithms to be programmed, Algorithmi

can also be executed inside the IDE or translated into HTML,

CSS and Javascript and executed in the browser.

Keywords - Algorithmi, Learning, Information System,

Programming.

I. INTRODUCTION

Computer programming is a core competency that is crucial

to several fields of computer science and lack of knowledge

in this area undermines learning of other content that builds

on it.
Learning to program is not easy because it requires the

combination of personal and cognitive skills that students
need to develop. The absence of these competencies leads to
a high failure rate in introductory programming modules
which makes it difficult for students to progress and complete
their degrees [1] [2] [3] [4]. Programming means thinking
abstractly and requires a lot of motivation and commitment.
For this reason, we have seen the replacement of traditional
teaching approaches with more motivating technological
solutions, such as Logo [5] or Scratch [6].

These tools are extremely fun and is easy to learn
programming with it, but they are very different from the
commercial programming languages that students will find in
the job market. The programming environments of these
languages have a friendly interface, often in the mother tongue
of the students. However, the algorithms do not have a

practical application because the problems that serve for
learning have a more playful context. One of the most
important programming tasks is the automatic mathematical
calculation through computational expressions. If languages
do not support these calculations, then its applicability boils
down to the teaching of computational logic.

In order to provide a tool for teaching and learning
computational algorithms that smooths the transition to
traditional programming languages and environments we
created Algorithmi. Algorithmi is an evolution of Portugol
IDE [7], [8], and provides a learning environment for
computational algorithms in which students use the language
that is based on their native language. The editing and
execution of the algorithm is based on flowcharts, and the tool
allows its translation into the most popular programming
languages. This facility enables students to view the
algorithms in their native language and their translation into
various programming languages and paradigms. This paper
describes how Algorithmi translates the algorithm into the
natural languages of the students and programming languages
used in the software development industry.

II. NATURAL LANGUAGES AND PROGRAMMING LANGUAGES

Idioms and languages, although related, are different
concepts. Idiom is an organized set of elements that enables
communication. On the other hand, language is the ability to
produce, develop and understand an idiom. We can consider
idiom as the tool used by a language to materialize.

A. Natural Languages

Most existing languages are natural languages that were
born from oral communication between individuals and have
later evolved to written form and symbolic representation.

When writing was created, human beings attempted to
give a visual representation to the words they used in their oral
communication and this representation in the early writings
was essentially ideographic, i.e. each symbol represented an
idea. It is curious how civilizations with no apparent contact
like the Egyptians or the Mayans, both developed an
ideographic writing based on hieroglyphs. However, it was
the Phoenicians who created a writing system based on
phonetic sounds associating a symbol with each phonetic
sound [9] which eventually gave rise to the Greek, Latin and
Arabic alphabet that is used by most languages. The Chinese
writing system, which gave rise to Japanese and Korean (also
widely used) incorporates features of ideographic writing and

phonetic writing, i.e. symbols representing ideas and symbols
representing sounds.

Language evolution has been exponential, slow and time-
consuming at first. Oral language took thousands of years to
evolve from small sounds to a vocabulary that allowed rich
and efficient communication between individuals and evolved
more rapidly as people were getting to know each other and
creating cultural and commercial relations. Or was simply
imposed by military power through territorial conquests.

The Portuguese language, for example, derives from Latin,
imposed by the military expansion of the Roman Empire, with
influences of the Celtic spoken by the Iberian peoples that
previously inhabited the region, with Germanic influences
imposed by the Suevi and the Visigoths that followed the
Romans and with influence of the Arabic through the Muslim
invasion of the Iberian Peninsula. All these events influenced
the Portuguese language only in hundreds of years. Today,
languages are influenced not in thousands of years, not
hundreds, but only in tens. The increase in schooling, the
removal of borders imposed by common economic areas,
emigration and globalization have put pressure on languages.

All these pressures make languages evolve, often faster than

their safeguarding bodies would desire.

Each language has its own rules but in day-to-day

communication people often infringe some of these rules and

this forces it to evolve.

B. Computational languages

Although computational languages seem to different from
natural languages, their origins are very similar and they serve
the same purpose: to communicate a message. Natural
language arises from the need of individuals to communicate
with each other, just as computational languages arise from
people’s need to communicate with computers.

 So, if natural languages are subject to pressures that lead
to their evolution, a similar thing happens with computational
languages. Just as natural languages have their grammatical
rules, computational languages have their syntactic rules.
However, it is in these rules that lies the main difference
between these two types of language.

In natural language, a severe infringement of grammatical
rules may prevent the other party from understanding the
message, but a slight mistake may not prevent the message
from getting through. But in computational languages even a
slight infringement of the syntactic rules is enough to prevent
the computer from perceiving the message.

Computers use the 0/1 alphabet to represent messages that
are transmitted to them by humans using natural language.
Computational languages have evolved over the last 70 years
starting [10] with those of the 1st Generation (where Machine
Languages fits in), in which the programmer had to have a
deep knowledge about the computer to communicate with it.
Those of the 2nd Generation, which include Assembler. Those
of the 3rd Generation, those of high level, where the
procedural languages fit with Basic, Pascal, C, Cobol or
Fortran. Those of the 4th Generation, which were highly
specialized languages in some tasks, such as DBASE, SQL or
Clipper. To conclude, those of the 5th Generation that include
object-oriented languages such as C++, Java, functional
languages such as LISP and logical languages such as
PROLOG.

All computer languages have in common the fact that there
is then a translation process that translates the message written
on that language into machine language so that the computer
can understand it. It is in this process of translation that a slight
breach of the syntactic rules is enough to prevent the computer
from decoding it.

Comparing the evolution of the writing of natural
languages with the writing of computational languages, the
first began with ideographic symbols and later evolved into a
phonetic representation, the second ones always tried to give
the programmer a more natural way of talking to the computer,
but never evolved beyond that. They evolved in the context of
solving and addressing the problems to be solved, with the
creation of several programming paradigms, but in their
essence, these paradigms are encoded with a set of similar
instructions. When learning programming, it is fundamental
for students to master the language of interaction with the
computer, and the computational languages seem to have all
been designed to solve complex problems and not for teaching
programming.

III. ALGORITHMIC LANGUAGE

The algorithmic language is an evolution of Portugol,
whose main characteristic is the fact that the students write the
algorithms in the Portuguese language. The language was
designed to teach programming and contains only what is
essential for this purpose. This simplification of general-
purpose computational languages leads to a reduced lexicon.
Algorithmi is a programming learning environment that uses
a formal language based on tokens, which is used to represent
and execute algorithms – the so-called General Algorithm
Language or GAL for short.

GAL is the language used by the core to verify and execute
algorithms in the learning system, Edition and execution of
algorithms is done by translating reserved words – tokens – to
corresponding words in the student’s mother tongue.

The GAL language predefined the keyboard as input
device and the screen as output device. The algorithms are
represented by computational instructions that manipulate
variables, to which a data type is associated (Table 1) by
reading the keyboard or by processing through operators and
functions (Table 2). The result of processing is displayed in
the console. The delimiters and operators are static and
defined in the core of the language, however everything else
is dynamic and can be translated into natural language words.

Table 1 presents the GAL simple data types in Portuguese,
English and Chinese. The void type was introduced to allow
for the setting procedures, namely functions that do not
perform calculations. The integer and real types allow you to
represent numeric data, the logical type represents the true and
false values, and the text type allows you to represent a set of
characters.

TABLE 1 – TYPES OF DATA

GAL Portuguese Chinese English

VOID vazio 空虚 void

INTEGER inteiro 整数 integer

REAL real 真实 real

TEXT texto 串 text

LOGIC lógico 布尔 logic

TABLE 2 – FUNCTIONS

GAL Portuguese Chinese English

INT int 整数 int

ELEMENTSOF length 要点 elementsof

SIN sin 罪 sin

COS cos 余弦 cos

TAN tan 黄褐色 tan

ASIN asin 反正弦 asin

ACOS acos 反余弦 acos

ATAN atan 反正切 atan

SINH sinh 双曲正弦 sinh

COSH cosh 双值的双曲

余弦值

cosh

TANH tanh 正切 tanh

ABS abs 绝对 abs

EXP exp 指数 exp

INT int 整数 int

LOG log 日志 log

LN ln 自然对数 ln

MIN min 分 min

MAX max 最大 max

POW pow 提升到了权

力

pow

SQRT sqrt 开方 sqrt

RANDOM random 随机 random

The functions defined in Table 2 are the ones that we
consider necessary to develop computational algorithms and
can be translated into the most popular computer languages.

TABLE 3 – CONTROL STRUCTURES

GAL Portugues

e

Chinese English

BEGIN inicio 开始 begin

END fim 结束 end

DEFINE definir 限定 define

READ ler 读 read

EXECUTE executar 执行 execute

WRITE escrever 写 write

IF ELSE se senão 如果其他 if else

WHILE enquanto 而 while

DO faz 做 do

ITERATE iterar 对于 for

JUMP saltar 打破 jump

FUNCTION função 功能 function

RETURN retornar 返回 return

Table 3 presents the instructions that are defined in the
language. This set of instructions is what is strictly necessary
to teach and learn the basics of algorithm for problem solving.
All algorithms start with BEGIN and end with END this also
allows closing blocks of instructions. The DEFINE statement
allows the definition and initialization of variables and
EXECUTE allows you to change its contents through
computational expressions. The interaction with the console is
done through READ for the user to enter data and WRITE to
write information to the console. The IF ELSE statement
allows you to make decisions with conditional expressions,
and the DO, WHILE, and ITERATE statements allow to repeat
a block of statements. The JUMP instruction allows you to
change the instruction flow within a cycle in conditional
shape, allowing you to break or continue the cycle. The
FUNCTION instruction allows the user to define functions by
allowing the modularization of algorithms and the RETURN
instruction allows the return of a value from functions that
perform calculations. The EXECUTE statement also allows
the execution of procedures (Functions that do not calculate
values).

Alg. 1 shows an algorithm, written in GAL language, that
prompts the user for their name and then prints a greeting. The
program exemplifies some of the characteristics of the
language, namely the definition and reading of variables, and
writing on the screen of text and computational expressions.

ALG. 1- PROGRAM THAT PRESENTS A COMPLIANCE WITH USER IN GAL

LANGUAGE.

 BEGIN MAIN_PROGRAM_NAME

 DEFINE TEXT txt SET "Hello "

 WRITE "What's your name? "

 READ TEXT name

 WRITE txt SUM name SUM "!"

 END MAIN_PROGRAM_NAME

In the following sections we present the algorithm
approaching the translation of the algorithm for natural
languages and computational languages.

A. Translation for natural languages

Algorithmi allows to translate the algorithm into any natural

language as long as the equivalences between GAL and its

words in the native language are predefined, as shown in

Table 2 and Table 3. The translation of the algorithm for the

natural languages is done translating the tokens for the words

into the desired language and Alg. 2 presents the translation

of Alg. 1 to the Portuguese, English and Chinese languages.

ALG. 2 - TRANSLATION FROM ALG. 1 TO PORTUGUESE, ENGLISH AND

CHINESE LANGUAGES.

 inicio Programa principal

 definir texto txt = "Hello "

 escrever "What's your name? "

 ler texto name

 escrever txt + name + "!"

 fim Programa principal

 begin MainProgram

 define string txt = "Hello "

 write "What's your name? "

 read texto name

 write txt + name + "!"

 end MainProgram

 开始 主程序

 限定 串 txt = "Hello "

 写 "What's your name ? "

 读 串 name

 写 txt + name + "!"

 结束 主程序

The algorithm natively has some languages but it allows

the new language to be added. To create translations, a small

application was developed, Figure 1, which allows to add

new languages in a simple and practical way.

As shown in Figure 1, there are 3 different panels. The

first panel has a listing of the GAL language keys that are to

be translated. The second has the translation of the keys in the

languages that are available in the application. The user can

change the translation language whenever he wishes so that

he can clarify any doubts that the current translation presents

and the third one is used to make the translation.

Figure 1 – Translator of natural languages of the application

Translations are stored in XML files that can be edited

independently by more experienced users. These files are

automatically read by the system in the application language

folder without any application compilation required.

The algorithms represented above are translated

automatically using available languages of the list

represented in Figure 2.

The available languages on the list are Extensible Markup

Language (XML) files produced by the application

represented in Figure 1.

Figure 2 – Natural language selector

Algorithmi allows to edit and visualize the algorithms in

flowchart form. The flowcharts replace the GAL instructions

of Table 3 by graphic shapes, where computational

expressions will be written.

Alg. 1 has a graphical representation in flowchart form

(Figure 3, Figure 4 e Figure 5). In the flowcharts, the

instructions in Table 3 are translated by the flowchart’s

symbols, the words that are present in Table 1 and Table 2

are translated into the language of the user. In computational

expressions, the names of variables, numerical constants and

texts are kept such as, for example, the constant “Hello”.

Figure 3 – Flowchart algorithm in Portuguese

Figure 4 – Flowchart algorithm in English

Figure 5 – Flowchart algorithm in Chinese

B. Translation for programming languages

Translation for programming languages is much more

complex. Natural languages have a direct translation because

the GAL language was developed for this purpose, in addition

to being interpreted by humans who use their intelligence to

make sense of words.

Programming languages are formal languages that are

compiled and executed by computers. The rules for writing

programs are strict and vary from language to language.

Programming languages invariably use English words in their

lexicon and differ from one another in the syntax and

semantics of computational instructions.

As shown in Figure 6, the users can change easily from

one language to another. This way of visualizing translations

for programming languages facilitate student learning

because they can start with basic programs and increase

difficulty in order understand how the language works, using

always their native language to make the programs.

Figure 6 – Programing language selector

1) Procedural languages

Procedural languages are high-level languages that use an

ordered set of instructions to write programs. The procedural

name comes from the fact that there are sets of instructions

grouped into functions or procedures. This feature allows you

to take a top-down approach to solving complex problems by

dividing them into simpler problems. This approach to

problem solving is one of the basic skills in computer

programming and most programming languages use the

concept of function or variants of it.

Algorithmi allows you to automatically translate to

procedural languages both C and Python.

C language is one of the most popular general-purpose

languages that provides compilers for a range of computer

system architectures. It was developed in the early 1970s by

Ken Thompson and Dennis Ritchie, it is a standardized

language (ISO) and gave rise to some of the more modern

languages such as C ++, which share much of its syntax and

semantics.

The executable programs generated from this language

are very efficient in the use of computational resources which

makes it the preferred language for programming critical

systems such as operating systems like Unix, for example.

Recently with the appearance of the Internet of Things, IOT,

which uses devices with reduced computational power, the C

language is very used in programming.

The Python language is a modern programming language that
supports several programming paradigms. Launched by
Guido van Rossum in 1991, it is currently maintained by a
community of programmers who develop specialized
libraries that allow them to expand language capabilities. It is
a language with increasing popularity and its syntax and
semantics is based on a set of principles known as The Zen
of Python[11] that promotes its simplicity and beauty.

ALG. 3- ALGORITHM TRANSLATION REPRESENTED ALG. 1 FOR C AND

PYTHON LANGUAGES.

#include <stdio.h>

int main() {

 char txt[256]= "Hello ";

 printf("What's your name ? ");

 char name[256];

 fgets(name,256, stdin);

 printf("%s %s !",txt,name);

}

txt = "Hello "

print("What's your name ? " , end="")

name = str(input())

print(txt, name, "!" , end="")

Alg. 3 presents the translation Alg. 1 for C and Python

language. This example demonstrates how different

languages can be, and therefore there is no common

procedure for translating algorithms into programming

languages.

In Alg. 3, C language requires the definition of variables with

data type, whereas the Python language does not, . C

language does not have the native type string, therefore a

vector of 256 characters must be defined whereas in Python

the string is a native dynamic object.

 C language has the braces ("{" and "}") to delimit blocks

whereas Python uses indentation. These features are visible

in a very simple program (Alg. 3), the differences between

the languages are so large that it is not possible to define a

generic procedure to do their translation. This translation will

have to be done through specialized code, made by

experienced programmers in the language in order to be able

to obtain programs that can be compiled and executed by the

computer.

2) Object oriented Languages

Object-oriented languages allow the programming of

applications based on composition and iteration between

objects. These objects are the fundamental unit of problem

solving that are defined through models given the name of

classes. This is one of the most successful programming

models in systems programming and there are many

languages that support it.

ALG. 4 - ALGORITHMO TRANSLATION REPRESENTED ALG. 1 FOR THE

LANGUAGES JAVA, C# AND C++.

import java.util.Scanner;

public class Hello {

 static Scanner keyb = new Scanner(System.in);

public static void main(String[] args) {

 String txt = "Hello ";

 System.out.print("What's your name?");

 String name = keyb.nextLine();

 System.out.print(txt + name + "!");

}

}

using System;

public class Hello {

 static void Main() {

 String txt = "Hello ";

 Console.Write("What's your name?");

 String name = Console.ReadLine();

 Console.Write(txt + name + "!");

 }

}

#include <iostream>

using namespace std;

class Hello {

 public:

 int main() {

 string txt = "Hello ";

 cout << "What's your name ? ";

 string name;

 cin >> name;

 cout << txt << name << "!";

 }

};

int main(){

 Hello application;

 application.main();

}

Algorithmi allows translation of algorithms for Java, C #

and C ++ languages that are shown in Alg. 4.

All these languages share the same programing model and

use “Class” as the reserved word to define their object model.

The Java and C# language allow to define the main

method inside the class which helps the translation of the

algorithm through static methods while the C++ language

only allows to define the model needing the main function to

create an object to be executed.

3) Web programming language

The programming languages for the Web, as the name

implies, are intended to develop applications that run on the

Web. The web is composed of a set of servers that provide

services to clients that are represented by browsers.

Algorithmi provides the PHP languages, which is used to

develop server-side applications, and the JavaScript language

used to develop client-side applications, the browser. Alg. 5

presents the translation of the algorithm for the PHP and

Javascript languages.

ALG. 5 - ALGORITHMO TRANSLATIONS REPRESENTED IN ALG. 1 FOR THE

PHP AND JAVASCRIPT LANGUAGES.

<?php

function main() {

 $txt = "Hello ";

 echo "What's your name ? ";

 $name = isset($_POST["$name"])?

$_POST["$name"] : isset($_GET["$name"]) ?

$_GET["$name"] : 0;

 echo $name . "
";// print input

 echo $txt . $name . "!";

}

main();

?>

function main() {

 var txt = "Hello ";

 document.write("What's your name ? ");

 name = prompt("name","");

 document.write(name + "\n");

 document.write(txt + name + "!");

}

Figure 7 – Code running on web browser

These languages are used to do data processing and

whose result is presented to the user using Hyper Text Markup

Language (HTML) languages, which will be formats through

Cascading Style Sheets (CSS). Combining HTML, CSS and

Javascript it is possible to run the algorithm in the student’s

browser and do a demonstration of the automatic translation

for high level languages. With a simple click Algorithmi

writes the program and executes it in the web browser as we

can observe in Figure 7.

The result of running the program is shown in Figure 8.

Figure 8 – Writing on the screen by the program using Javascript

IV. CONCLUSION

In this article we introduce the translation functionality

with a learning environment system. Algorithmi introduced

English and Portuguese natively in the system, which

function as standard languages and we introduced Chinese

using Google's Application Programming Interface (API) as

a demonstration of concept, to show the use of the system

with non-Western characters. Since none of the authors

dominates the Chinese language, we cannot guarantee that

the translation is correct. As future work, we want to ask the

community for help, so that people can translate it into their

native language.

Algorithmi is under development with its functionalities

and usability being tested during the 2016/2017 and

2017/2018 school years. The feedback of students through

programming with the Portuguese language has been very

positive in teaching programming logic.

The translation into the programming languages helps the

algorithmic language transaction for the computational

programming languages that are used in more advanced

programming classes.

In the future we plan to introduce new programming

models, such as functional languages (lambda) or new

languages such as Swift.

REFERENCES

[1] M. Butler e M. Morgan, “Learning challenges faced by novice
programming students studying high level and low feedback concepts”,
ASCILATE 2007 Singapore, 2007, pp. 99-107.

[2] T. Jenkins, “On the difficulty of learning to program”, Proceedings
of the 3rd Annual Conference of the LTSN Centre for Information
and Computer Science, 2002, pp. 27-29.

[3] E. Lahtinen, K. A. Mutka e H. M. Jarvinen, “A Study of the
difficulties of novice programmers”, Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer
ITiCSE’05, 2005, pp. 14-18.

[4] A. Yadin, Reducing the dropout rate in an introductory programming
course. ACM Inroads, 2(4), 2011, pp. 71-76.

[5] H. Abelson, N. Goodman, e L. Rudolph, "LOGO Manual",
Massachusetts: Artificial Intelligence Lab, Massachusetts Institute of
Technology, 1974.

[6] MIT Media Lab, “Scratch”, Accessed 17 November 2017 at
https://scratch.mit.edu/

[7] A. Manso, L. Oliveira, e C. G. C. Marques, “ Ensino da Programação

através da Linguagem Algorítmica e Fluxográfica”, In C. V. Carvalho,

R. Silveira & M. Caeiro (Coord.), TICAI 2009. TIC's para a
Aprendizagem da Engenharia. IEEE, Sociedade de Educação:

Capítulos Espanhol e Português. Porto: Edições Politema, 2011, pp.

105-110.

[8] A. Manso, C. Marques e P. Dias, “Portugol IDE v3.x: A new
environment to teach and learn computer programming”, In M. C. Gil,
E. T. Caro, M. E. Auer e M. P. B. Merino (Cords.), IEEE EDUCON
2010 Conference - The Future of Global Learning in Engineering
Education. Madrid: UPM - Servicio de Publicaciones - EUI – UPM,
pp. 1007-1010.

[9] S. R. Fischer, “História da Escrita”, London: Reaktion Books, 2003.

[10] B. J. Maclennan, “Principles of Programming Languages. Design,
Evaluation and Implementation”, Oxford: Oxford University Press,
1999.

[11] Python Software Foundation, PEP 20 - The Zen of Python, Accessed

04 April 2019,
https://scratch.mit.edu/https://www.python.org/dev/peps/pep-0020/

